PROBLEM SET 5

Considering time pressure, this problem set is for practice only --- not required or recorded.

It's OK to co-operate with classmates on problem sets. If you get stuck on a problem, don't waste a lot of time on it --- you have better things to do.

The following problems from Starr's *General Equilibrium Theory*, 2nd edition, are assigned.

20.10

20.11

In addition, two problems adapted from the June 2008 qual are assigned, attached below.

Question 3

Consider an Arrow-Debreu economy with a full set of futures markets over time without uncertainty. Denote the present as date 0, and suppose there are a finite number of future periods, T.

Parts (i) and (ii) ask how saving and investment take place in this economy:

(i) Household h has a large endowment dated in periods T and T -1 but zero endowment dated 0, 1, 2, ..., T -2. Household h wants relatively constant consumption throughout the periods 0, 1, 2, ..., T. How can h arrange desired consumption using the futures markets?

(ii) Firm f has profitable investment opportunities at dates 0 and 1 that will produce marketable outputs at date k, k+1, ..., T (where 2 < k < T). How can f arrange to buy and pay for its 0 and 1 inputs using the futures markets?

(iii) Let there be n commodities available at each date t. The full commodity space is R^N where N = n(T + 1). Let equilibrium production in the economy be $y \in R^N$, $y=(y_0, y_1, \ldots, y_T)$ where the typical $y_t \in R^n$, represents period t output. y_t may differ from y_{t+1} . That is, equilibrium output may vary over time, despite the presence of a full set of futures markets and the absence of uncertainty. How can that happen?

Question 4

Consider the following group decision-making mechanism. The Arrow Social Choice conditions may be summarized as: transitivity, nondictatorship, independence of irrelevant alternatives, Pareto principle, unrestricted domain. Which of the Arrow social choice conditions does the decision procedure below fail? Which does it fulfill? Explain fully.

<u>Group Ranking Procedure:</u> The choice set X consists of N (finite positive integer) alternatives, A, B,C, ... There are three voters. Each voter submits a ballot ranking the alternatives in order of preference. The voting procedure then gives each voter's top place choice a weight of N; the second place choice is given a weight of N-1; and so forth. For each alternative, the weighted votes of all the voters are then added up. The alternatives are then given a ranking in order of weighted vote total, highest total most preferred. A tie-breaking rule may be needed.

The question ends here.

You may find the following example useful, with four alternatives listed in rank order.

Profile 1				Profile 2		
Voter1	Voter 2	Voter 3		Voter1	Voter 2	Voter 3
А	В	В		А	С	С
В	А	А		С	D	D
С	С	С		D	В	В
D	D	D		В	А	А

For reference, a restatement of the Arrow social choice theory is presented below.

A Summary of Arrow Social Choice Theory

The Arrow (Im) Possibility Theorem can be stated in the following way. We'll follow Sen's treatment.

X = Space of alternatives; X is assumed to have at least three distinct elements.

 Π = Space of transitive strict orderings on X

H = Set of voters, numbered #H

 $\Pi^{\#H} = \#H$ - fold Cartesian product of Π , space of preference profiles

f: $\Pi^{\#H} \rightarrow \Pi$, f is an Arrow Social Choice Function.

 P_i represents the preference ordering of typical household i. $\{P_i\}$ represents a preference profile, $\{P_i\} \in \Pi^{\# H}$. P represents the resulting group (social) ordering.

" x P_i y " is read "x is preferred to y by i" for $i \in H$

P (without subscript) denotes the social ordering, $f(P_1, P_2, ..., P_{\#H})$.

<u>Unrestricted Domain</u>: Π = all logically possible strict orderings on X. $\Pi^{\text{#H}}$ = all logically possible combinations of #H elements of Π .

<u>Non-Dictatorship</u>: There is no $j \in H$, so that $x P y \Leftrightarrow x P_j y$, for all $x, y \in X$, for all $\{P_i\} \in \Pi^{\#H}$.

<u>(Weak) Pareto Principle</u>: Let $x P_i y$ for all $i \in H$. Then x P y.

For $S \subseteq X$, Define $C(S) = \{ x | x \in S, x P y, \text{ for all } y \in S, y \neq x \}$

<u>Independence of Irrelevant Alternatives</u>: Let $\{P_i\} \in \Pi^{\#H}$ and $\{P'_i\} \in \Pi^{\#H}$, so that for all $x, y \in S \subseteq X$, $x P_i y$ if and only if $(\Leftrightarrow) x P'_i y$. Then C(S) = C'(S).

<u>General Possibility Theorem (Arrow)</u>: Let #H be finite, $\#X \ge 3$. Then there is no f: $\Pi^{\#H} \rightarrow \Pi$ satisfying (Weak) Pareto Principle, Independence of Irrelevant Alternatives, Unrestricted Domain, and Non-dictatorship.