PROBLEM SET 5

Considering time pressure, this problem set is for practice only --- not required or recorded. It's OK to co-operate with classmates on problem sets. If you get stuck on a problem, don't waste a lot of time on it --- you have better things to do.

The following problems from Starr's General Equilibrium Theory, $2^{\text {nd }}$ edition, are assigned.

20.10

20.11

In addition, two problems adapted from the June 2008 qual are assigned, attached below.

Question 3

Consider an Arrow-Debreu economy with a full set of futures markets over time without uncertainty. Denote the present as date 0 , and suppose there are a finite number of future periods, T .

Parts (i) and (ii) ask how saving and investment take place in this economy:
(i) Household h has a large endowment dated in periods T and $\mathrm{T}-1$ but zero endowment dated $0,1,2, \ldots, \mathrm{~T}-2$. Household h wants relatively constant consumption throughout the periods $0,1,2, \ldots, T$. How can h arrange desired consumption using the futures markets?
(ii) Firm f has profitable investment opportunities at dates 0 and 1 that will produce marketable outputs at date $\mathrm{k}, \mathrm{k}+1, \ldots, \mathrm{~T}$ (where $2<\mathrm{k}<\mathrm{T}$). How can f arrange to buy and pay for its 0 and 1 inputs using the futures markets?
(iii) Let there be n commodities available at each date t. The full commodity space is R^{N} where $N=n(T+1)$. Let equilibrium production in the economy be $y \in R^{N}$, $y=\left(y_{0}, y_{1}, \ldots, y_{T}\right)$ where the typical $y_{t} \in R^{n}$, represents period t output. y_{t} may differ from y_{t+1}. That is, equilibrium output may vary over time, despite the presence of a full set of futures markets and the absence of uncertainty. How can that happen?

Question 4

Consider the following group decision-making mechanism. The Arrow Social Choice conditions may be summarized as: transitivity, nondictatorship, independence of irrelevant alternatives, Pareto principle, unrestricted domain. Which of the Arrow social choice conditions does the decision procedure below fail? Which does it fulfill? Explain fully.

Group Ranking Procedure: The choice set X consists of N (finite positive integer) alternatives, A, B,C, There are three voters. Each voter submits a ballot ranking the alternatives in order of preference. The voting procedure then gives each voter's top place choice a weight of N ; the second place choice is given a weight of N-1; and so forth. For each alternative, the weighted votes of all the voters are then added up. The alternatives are then given a ranking in order of weighted vote total, highest total most preferred. A tie-breaking rule may be needed.

The question ends here.
You may find the following example useful, with four alternatives listed in rank order.

	Profile 1			Profile 2		
Voter1	Voter 2	Voter 3		Voter1	Voter 2	Voter 3
	A	B	B	A	C	C
B	A	A		C	D	D
C	C	C	D	B	B	
D	D	D	B	A	A	

For reference, a restatement of the Arrow social choice theory is presented below.

A Summary of Arrow Social Choice Theory

The Arrow (Im) Possibility Theorem can be stated in the following way. We'll follow Sen's treatment.
$\mathrm{X}=$ Space of alternatives; X is assumed to have at least three distinct elements.
$\Pi=$ Space of transitive strict orderings on X
H = Set of voters, numbered \#H
$\Pi^{\# \mathrm{H}}=\# \mathrm{H}$ - fold Cartesian product of Π, space of preference profiles
$\mathrm{f}: \Pi^{\# \mathrm{H}} \rightarrow \Pi$, f is an Arrow Social Choice Function.
P_{i} represents the preference ordering of typical household i . $\left\{\mathrm{P}_{\mathrm{i}}\right\}$ represents a preference profile, $\left\{\mathrm{P}_{\mathrm{i}}\right\} \in \Pi^{\# \mathrm{H}}$. P represents the resulting group (social) ordering.
" x $P_{i} y$ " is read "x is preferred to y by i " for $i \in H$
P (without subscript) denotes the social ordering, $f\left(\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{\# \mathrm{H}}\right)$.
Unrestricted Domain: $\Pi=$ all logically possible strict orderings on X . $\Pi^{\# \mathrm{H}}=$ all logically possible combinations of \#H elements of Π.

Non-Dictatorship: There is no $\mathrm{j} \in \mathrm{H}$, so that $\mathrm{xP} \mathrm{y} \Leftrightarrow \mathrm{x} \mathrm{P}_{\mathrm{j}} \mathrm{y}$, for all $x, y \in X$, for all $\left\{P_{i}\right\} \in \Pi^{\# H}$.
(Weak) Pareto Principle: Let $\mathrm{x} \mathrm{P}_{\mathrm{i}} \mathrm{y}$ for all $\mathrm{i} \in \mathrm{H}$. Then x P y.
For $S \subseteq X$, Define $C(S)=\{x \mid x \in S$, $x P y$, for all $y \in S, y \neq x\}$
Independence of Irrelevant Alternatives: Let $\left\{\mathrm{P}_{\mathrm{i}}\right\} \in \Pi^{\# \mathrm{H}}$ and $\left\{\mathrm{P}_{\mathrm{i}}{ }^{\prime}\right\} \in \Pi^{\# \mathrm{H}}$, so that for all $\mathrm{x}, \mathrm{y} \in \mathrm{S} \subseteq \mathrm{X}, \mathrm{x} \mathrm{P}_{\mathrm{i}} \mathrm{y}$ if and only if $(\Leftrightarrow) \mathrm{x} \mathrm{P}_{\mathrm{i}}^{\prime} \mathrm{y}$. Then $C(S)=C$ '(S).

General Possibility Theorem (Arrow): Let \#H be finite, \#X ≥ 3. Then there is no $\mathrm{f}: \Pi^{\# \mathrm{H}} \rightarrow \Pi$ satisfying (Weak) Pareto Principle, Independence of Irrelevant Alternatives, Unrestricted Domain, and Non-dictatorship.

